
276 
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This paper is concerned with the boundary layer on a semi-infinite flat plate in 
a uniform stream of conducting fluid, with a magnetic field in the stream direction 
such that the Alfv6n speed is less than the undisturbed fluid speed. Series solu- 
tions are derived which are applicable for large and small values of the electrical 
conductivity, and which give a guide as to the validity and limitations of theories 
which assume the fluid to have infinite or zero conductivity. 

1. Introduction 
The subject of this paper is the derivation of solutions of the equations 

governing a certain problem in magnetohydrodynamics. This problem, discussed 
in detail by Greenspan & Carrier (1959) in a paper hereafter referred to as I, 
concerns the steady two-dimensional flow of a viscous incompressible electrically 
conducting fluid of constant properties past a semi-infinite rigid plate. The 
applied magnetic field is uniform and in the direction of the undisturbed stream, 
which is parallel to the plate and perpendicular to its edge. 

As shown in I and recapitulated briefly in the Appendix to this paper, the 
boundary-layer equations governing the flow are 

f" + ff f f  -/3ggf' = 0, 

g" + €(fg' -f'g) = 0, 
with boundary conditions 

f(0) =f'(0) = g(0) = 0, f'(Oo) = g'(c0) = 2. (1.3) 

Here E = upv is the ratio of the viscous to the magnetic diffusivity and is pro- 
portional to the conductivity of the fluid, and ,!? = p G / p V i  is the square of the 
ratio of the Alfvhn speed to the fluid speed in the undisturbed flow. The fluid 
has density p, kinematic viscosity v, electrical conductivity CT and magnetic 
permeability p, and in the undisturbed stream the speed is Uo and the magnetic 
field intensity is H,,. The functions f(7) and g(7) describe the velocity field and 
the magnetic field respectively, where 

is the usual Blasius non-dimensional variable, x and y being distances measured 
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along and perpendicular to the plate from its leading edge. The velocity com- 
ponents are 

(1.5) u = 6 W ’ ,  21 = i t ( U 0 4 4 ~  ( f -Tf ‘ ) ,  

and the magnetic field components are 

The method used in I to tackle the problem was to replace the fundamental 
equations by Oseen equations, linearized equations obtained by assuming that 
the convective velocity and magnetic fields may be replaced by their free-stream 
values. For /3 < 1 the method led to plausible results, although they did not 
agree very satisfactorily with certain numerical solutions of equations (1.1) 
and (1.2). For /3 > 1 the whole formulation of the problem breaks down. The 
Alfv6n speed is then greater than the fluid speed and disturbances penetrate 
upstream ahead of the plate, so it is no longer possible to describe the flow 
completely in terms of the Blasius variable based on the leading edge. This was 
confirmed in I by a study of the Oseen equations applicable to a flat plate of 
finite length. The solutions for /3 < 1 obtained in I, and an investigation of the 
nature of the equations when 1 -/3 is small and E = 1, were interpreted by the 
authors as indicating that the entire flow becomes ‘plugged’ or brought to rest 
at the critical value p = 1. 

Further discussions of the problem by means of the Oseen equations have been 
given by Carrier & Greenspan (1960) and by Greenspan (1960). The former paper 
treats unsteady flow conditions and the latter the flow past a finite plate with 

The scope of the present paper is limited to the range /3 < 1, with 1 -/3 not 
small. Two solutions in series of the full boundary-layer equations (1.1) and (1.2) 
are obtained, valid for large and for small values of E respectively. Several terms 
are calculated explicitly, each depending in a simple manner on the parameter /3. 
The physical reason why such series expansions are possible is that when E is 
large the magnetic boundary layer is effectively much thinner than the velocity 
boundary layer and when E is small it is much thicker. The situation has many 
points of similarity to the study of heat transfer in a laminar boundary layer of 
non-conducting fluid, as discussed by Morgan & Warner (1956) and by Morgan, 
Pipkin & Warner (1958). The temperature distribution function and the Prandtl 
number there take analogous places in the equations to the magnetic field func- 
tion g(T)  and the conductivity parameter E .  

Our series solutions appear to give reliable numerical values for the ranges 
E > 10 and E < 0.001. Most practical applications will probably be covered by 
one or other of these cases. If results are required for some specific values of E 

outside these ranges they may be obtained without undue labour by use of an 
electronic computer, but the presence of two arbitrary parameters E and ,8 means 
that anything like a complete coverage is a formidable task. The equations have 
simple solutions for E = co and for E = 0,  and perhaps the chief point of interest 
is to see how these limiting values are approached, since in many problems in 
magnetohydrodynamics it is most helpful to be able to assume that the electrical 
conductivity is either infinite or zero. 

p >  1. 
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2. Equations for large conductivity 
When the electrical conductivity is large it is convenient to make a slight change 

of variables, in order that the functions to be calculated shall as far as possible 
be independent of the parameter p. We write 

r = (1 -P)-% f(r) = (1 -P)-&p(@, s(r) = (1 - P ) - W %  (2.1) 

and € = (1-P)h. (2.2) 

f ‘ ( r )  = P’(81, f”(r) = (1 -P))P”(@, etc., 

As stated above, 1 - p is supposed to be positive and not small. Then 

and the equations (1.1) and (1.2) become 

( 1 - p) pill + pp” - Pqq” = 0, 

a”+4pq’ -p ’q )  = 0,  
with boundary conditions 

p ( 0 )  = p’(0) = q(0) = 0, p’(o0) = q’(c0) = 2. (2.5) 

For aperfectly conducting fluid A, like E, is not only large but infinite. Equation 
(2.4) reduces to pq‘ = p’q and the only solution satisfying (2.5) is 

P(8) = 4(@- 

PI‘’ +pp” = 0, 

P V )  = B(@, 

Equation (2.3) now becomes 

of which the required solution is 

where B(8) is the well-known Blasius function which governs the boundary layer 
on a flat plate in a non-conducting fluid. 

If h is finite this solution is incorrect in the vicinity of the plate. It implies 
that  q”(0) = B”(O), which is non-zero, while the boundary conditions (2.5) and 
equation (2.4) show. that q”(0) = 0. It is clear that however large h may be there 
is an inner part of the boundary layer in which the first term of (2.4) cannot be 
ignored. According to (2.8), when B is small p = 0(O2), p‘ = O(B), p“ = O(1) and 
similarly for q(B), and so the terms of (2.4) become of comparable magnitudes 
when 8 = O(h-4). We must introduce an appropriately stretched co-ordinate to 
describe the inner layer. Since the transformed equation (2.4) must no longer 
contain h explicitly we write 

8 = A - q ,  p ( 8 )  = A-W(rg), q(8) = h-Q([). (2.9) 

It follows that p’(8) = h-*P’([), p”(B) = P”(<), etc., and (2.3) and (2.4) become 

A( 1 - p) P”’ + PP” - PQQ” = 0, 

Q” + PQ‘ - P‘Q = 0, 
* 

(2.10) 

(2.11) 

with boundary conditions P(0) = P’(0) = Q(0)  = 0. The boundary condition at 
0 = co is of no importance to the inner layer. 
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We may now seek solutions for p ,  q, P and Q in the form of series in descending 
powers of A, and hope to be able to determine the arbitrary constants which arise 
in the integrations by matching the forms of the inner solutions for large ( to 
the outer solutions for small 8. The form of the transformation (2.9) shows that 
it will be most convenient to  carry out this matching by balancing corresponding 
second derivatives, since the relations between these do not involve h explicitly. 

3. Solutions for large conductivity 
The fist approximations po(8), qo(8), Po((), Qo(( )  to the solutions are found 

by taking h to be infinite in (2.3), (2.4), (2.10) and (2.11). As determined in 
(2.6) and (2.8) 

The form of the substitution (2.9) permits no change in the boundary conditions 
(2.5) at 8 = 0, if Po(() and Qo(()  are to be independent of A. Equation (2.10) 
becomes 

(3.1) Po(4 = Po(@ = B ( 0  

(3.2) PI: = 0, 

and hence Po(() = *At2, (3.3) 

A = B”(0) = 1.32823. (3.4) 

Qi+*A(2Q~-A5Qo = 0, (3.5) 

Q o ( 5 )  = KtlFi(-+,+, -$At3) ,  (3.6) 

where A is a constant. For small 8, p i  6 B”(0) and the solutions will match as 
required if 

Equation (2.11) now becomes 

and the solution for which Q,”(m) = A ,  as required to match with qo, is 

where lFl is the confluent hypergeometric function and 

2 1  
K = 3 k& A%& = 1.1098. (3.7) (611 

This shows that QA(0) = K .  

shows that 

which requires that for 8 small 

The asymptotic form of the confluent hypergeometric function for ( large 

Qo N &A(’++(-’+ ..., (3.8) 

p = &482+@-18-1+ .... 

B(e) = 4 . 4 0 2 - & ~ 2 8 5 +  ..., 
Likewise for 8 small 

and hence for E large 
P, Q N 3A(2-i43A2h-1(5+.... 

(3.9) 

(3.10) 

(3.11) 

These expressions indicate the nature of the extra terms which must be added 
to the inner and outer solutions in order to improve the matching. In  fact rather 
more is needed. The appropriate expansions are 

(3.12) 
p ( o )  = p 0 ( q  + A-1 log hpl(e) + h-1p2(e) + . . ., 
P( t ) = Po( () + h-1 log h Pl( 5) + h-lP,( 5) + . . . , 
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and similarly for q(8) and Q(6).  The functions occurring in these expansions are 
independent of h but do involve the parameter P. The necessity for including 
terms in A-l log h is seen from a study of the appropriate equations, which are 
obtained by equating to zero the coefficients of successive powers of h in (2.3), 
(2.4), (2.10) and (2.11). The equations are as follows: 

(1-P)P~+PoP~+P,”Pl-Pqop.;-Pq,”q, = 0, (3.13) 

PoQ;-Phql+Plqh-P,;qo = 0, (3.14) 

P; = 0, (3.15) 

(3.16) 

(3.17) 

(3.18) 

( l -P)P~+PoP,”-PQoQ,” = 0, (3.19) 

(3.20) 

Q; +Po&; -Pi  Q1 +PI Qh -Pi  Qo = 0, 

( 1  - P) P? + POP,” +P,”P2 - h o d  - P d  Pz = 0, 

q,” +Pod -PA q12 +P2d - Pl40 = 0, 

Q,” + Po Q L  - Ph Qz + PZ Qh - PL Qo = 0. 

Let us examine the behaviour of (3.19) for large 5. From (3.3) and (3.8), 

Po P,” - PQo Qi - &A2( 1 - P)  c 2  - 

and hence (3.21) 

where C, is a constant. The first term is precisely as demanded by (3.11). 
A similar inspection of (3.20) reveals that Q2 must also contain a logarithmic 
term. Use of (3.3), (3.8) and (3.21) shows that for large f; 

Pi N - +A2c3 + QA ~ P log 5 + C,, 
1-P 

(3.22) 

Without the presence of the term in log 5 the coefficient of t3 in (3.20) cannot be 
zero. Studies of (3.17) and (3.18) show in the same way that for 0 small 

The first term of (3.24) is in agreement with (3.9). The implication of (3.23) is 
that for 6 large P”(6) must have a contribution 

(3.25) 

The first term demonstrates that the expansion must include terms in h-llog h 
if the inner and outer solutions are to balance. The last term is satisfied by (3.21) 
provided that C, = c,. Similarly, we deduce from (3.24) that D, = d,, and that 
Q”(6) must have a contribution 

(QA~P(log5-)logA)+c, P 

(3.26) 
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We now turn toequations (3.13) to (3.16). The only solutionof (3.13) and (3.14) 
satisfying the boundary conditions is pl = q1 = 0. The solution of (3.15) which is 
in agreement with (3.25) is 

PI=-- ;A - 1 +P. P (3.27) 

Equation (3.16) may then be written as 

Q;+*AC2Q;-At&1 = 3 ~ p Q : '  4 P  (3.28) 

using (3.5). A particular integral of (3.28) is 

and a complementary function is Q1 = Qo. Both of these satisfy the boundary 
condition Ql(0) = 0, and in view of (3.26) the required solution is 

so that 

(3.29) 

(3.30) 

To complete this stage of the approximation the equations (3.17) to (3.20) 
were integrated numerically. Care was needed owing to the logarithmic behaviour 
of the functions, but the expressions (3.21) to (3.24) were of great assistance, and 
the work was shortened by the fact that all the equations have simple comple- 
mentary functions. The integration of (3.17) and (3.18) under the boundary 
conditions 

P,(O) = P P )  = q2(0) = P Z a )  = 4200) = 0 

determined the constants c, and d,, and (3.19) and (3.20) were then integrated 
with boundary conditions 

P,(O) = Ph(O) = Q2(0) = 0, P;(.o) = c,, &;(a) = d,. 

The results of chief importance were 

P'i(0) = 0 * 5 7 7 B A ,  
1 - P  

QL(0) = (0*557i_p-0*026 P 

(3.31) 

(3.32) 

Finally we may inquire what is the dependence on h of the next most important 
terms in the expansion (3.12). It is clear that contributions in log2 h are present 
in equations (2.10) and (2.11), so the next terms must be of at least this order of 
magnitude. An inspection of the equations which govern these terms reveals no 
logarithmic or other awkward behaviour, so we conclude that the next terms 
in (3.12) are indeed multiples of h-, log2 A. 

The most important physical quantities to be estimated from our analysis 
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are the skin friction 7w at the plate and the surface value Ht of the tangential 
component of magnetic intensity. The results are 

(3.33) 

e 
= 0-5549H0(1 -P)*e-f 1 - (0.4148P+O-l778)~-~10g-- 

1 - P  

+ (0 .583P-0.026)€-1+O(~-21~g2~) . (3.34) 1 
4. Equations for small conductivity 

When the electrical conductivity is such that E is small compared with unity 
a completely fresh start is necessary, though it will be observed that the steps in 
the analysis have strong points of resemblance to what has gone before. The 
preliminary transformation of variables given by (2.1) and (2.2) is no longer 
required, and we revert to the original forms of equations (1.1) and (1.2). 

For a non-conducting fluid in which B is zero the solution of (1.2) satisfying the 
boundary conditions (1.3) is 

and (1.1) becomes f”’ + ff” = 0. As before the required solution is given by the 

(4.1) S(T) = 2% 

Blasius function 

When E is small but non-zero (1.2) is not satisfied by (4.1) and (4.2) for large 
values of 7. The asymptotic form of B(7) shows that 

f N 27-c (4.3) 

for 7 large, where c = 1.7208. Consequently the second term of (1.2) has the 
limiting value - ~ C E ,  while (1.3) insists that g”(o0) = 0. It is clear that we must 
introduce a new co-ordinate to discuss the outer part of the boundary layer. 
Throughout this outer layer f ’  and g’ remain of order unity, in view of (1.3), but 
the terms of (1.2) must be of comparable magnitude for arbitrarily small E .  

Accordingly we write 

7 = e-*c, f(7) = s-WC),  g(7) = E - W C ) .  (4.4) 
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Thenf'(7) = F'(C), f"(7) = dF"(<),  etc., and (1.1) and (1.2) become 

EF"' + FF" - pGG" = 0, 

G"+ FG' - F'G = 0, 

with boundary conditions F'(co) = G'(co) = 2. When I is small the values of F 
and G must be in accord with the values off and g for 7 large, matching being 
carried out as for the case of large conductivity. The only difference is that the 
form of transformation given above shows that now it is the first derivatives of 
the corresponding inner and outer functions which must balance at each stage 
of the series expansion. 

5. Solutions for small conductivity 
The first approximations fo(7), go(7), F,(g) and Go(C) are found by taking E to 

be zero in ( l . l ) ,  (1.2), (4.5) and (4.6). The required solutions of (4.5) and (4.6) 

(5.1) 
are seen at once to be Fo = Go = 25. 

Matching these solutions requires no change in the boundary conditions (1.3) 
at 7 = co, so, as in (4.1) and (4.2), 

f o  = W),  90 = 27. (5.2) 

The only one of these four functions which gives a contribution to later stages of 
the matching is fo. As in (4.3), fo N 27 - c and this implies that 

F = 2 5 - ~ d +  ... 
for 5 small. 

Appropriate forms of expansion turn out to be 

(5.3) 

(5.4) 

and similarly for g(7 )  and G(5). The presence of the logarithmic terms will be 
proved in due course. The terms in €4 in (l.l), (1.2), (4.5) and (4.6) lead to the 

(5.5) 
equations 

g; = 0, (5.6) 

(5.7) 

(5.8) 

25(P;-pG;) = 0. (5.9) 

f ( 7 )  =fo(7)+~f i (4)+"log~f2(7)+~f , (7)+  e m . 7  

F(5) = Fo(6) + €*F,(5) + slog €'2(5) + + * * - 7  

f~+fO~;+f~fl-p909;-pg:91 = 0, 

FOP; + F i  Fl -pG0C; - pG: G, = 0, 

G; +FOG; - FAG1 + FIG; - F; Go = 0. 

Using (5.1) we can write (5.7) as 

Now Fi(co) = G;(m) = 0, and by (5.3), F,(O) = -c, G,(O) = 0, so (5.9) may be 

(5.10) integrated twice to give 

Substituting this result in (5.8) we obtain 

F1= ~ G , - c .  ' 

Gl+ 2( 1 - p) CG; - 2( 1 - p) G, = 2 ~ .  (5.11) 
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A particular integral of this equation is G, = - c/( 1 -P), and the complementary 
functions are 

G, = C and G, = e x p [ - ( 1 - ~ ) ~ 2 ] - 2 ( 1 - ~ ) ~ ~ e r f c ( l - ~ ) ~ ~ ,  

where erfc z = S,: e-2 du. 

The boundary conditions show that the required solution of (5.11) is 

C 
G, = - { - 1 +exp [ - (1 --P)C2] - 2(1 -P)"erfc (1 --P)"}, 

F1= i-$- 1 +Pexp [ - (1  -P)  C2] - 2P( 1 - P)g Cerfc ( 1  - P)* 5). 

(5.12) 
1-P 

and hence 
C 

(5.13) 

Then (5.14) 

(5.15) 

since erfc 0 = &r.". The solution of (5.6) to give the necessary matching is 

7 d C T  

(1 -PP - 
g,=----.- 

Equation (5.5) reduces to f: + Bf; +B"f, = 0, and the required solution is 

(5.16) 

where A is given by (3.4). The contributions to later terms of the series implied 
by these results are that for y small F has a term $dc2/3( 1 -P)-i E ,  and for 7 
large f has a term c,8y2e and g a term q 2 e .  The last two results follow from the 
fact that Pi(0) = P C ; ( O )  = 2cP. 

The equations which determine the next batch of functions are: 

f: +foE +mi -PSos; -Ps"02 = 0, (5.19) 

g; = 0, (5.20) 

Fo lTi + Fi F! -/3GoGi -PGi G2 = 0, (5.21) 

Gi +FOG: - FAG2 + F2GA - FhGo = 0, (5.22) 

f: + f O f [  + f 3 3  - P90 93" - P9: 93 +fl f'; - Pg, 9'; = 0, (5.23) 

93" +fog; -f go = 0, (5.24) 

F[ + F,, F; + Fi F3 -/3GoG;" -PGi Ga + FIFi -/?GIG; = 0, (5.25) 

Gg +FOG; -FAG3 + F3GA - FiGo + FIGi - F;  G, = 0. (5.26) 

Equation (5.24) is gg + 2B - 2yB' = 0, which shows that when 7 is large g3 N 672, 
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as predicted above. For large 7, (5.23) now gives fjl+(27-c) f;’-4c& - 0 
which can only be satisfied if f;’ N 2cP + czPprl-’ and hence 

f; N 2cp7 + c y  log 7. (5.27) 

The fmt term is as required for the matching and the second proves (in the same 
way as for large E )  that logarithmic terms must be present in the expansions. 
Similarly, a study of (5.25) and (5.26) shows that when 6 is small 

FA == c2Plog Q (5.28) 

but G; is bounded. Now log 6 = log7 + *loge, and so (5.28) implies that an 

additional contribution f ’(7) -h &”I5 log 6 (5.29) 

for 7 large is required to balance the inner and outer solutions. 
The only solutions of (5.21) and (5.22) which satisfy the boundary conditions 

are F, = G, = 0. Also since g ,  and G, have no logarithmic terms the required 
solution of (5.20) is g2 = 0. Equation (5.19) reduces to f[ +Bfi +B”f, = 0, and 
in view of (5.29) the appropriate solution is 

f, = +C,P(B + TB’), (5.30) 
which shows that &(O) = +c2/3A. (5.31) 

In  the set of equations corresponding to the next stage of the approximation 
(5.25) and (5.26) can be integrated explicitly, using the known boundary con- 
ditions 

The values of &(O) and G;(O) thus obtained, together with the conditions 
f3(0) = f;(O) = g3(0)  = 0, suffice to  determine the required solutions of (5.23) 
and (5.24)) but here, as at the corresponding stage of the work for large con- 
ductivity, numerical integration is needed for the first time. As before, simple 
complementary functions are available. The integrations gave the values 

F3(0) = $dc2P(I -B)-*, G3(0) = F;(co) = G;(co) = 0. 

f;’(O) = [ 11.814 + 0.606 ~ +jczIog(l-~)] ,8A,  
1 - P  

(5.32) 

gj(0) = 6.056 - 0.354- P (5.33) 
1 -p‘ 

Further terms in the expansions could be calculated if required, but it seems 
unlikely that the range of values of E for which the series solution gives useful 
information could be extended significantly without considerable labour. An 
inspection of the equations governing the next terms of the expansion shows that 
these are not of greater order of magnitude than €8 log E .  

The formulae for T~ and Ht which follow from the analysis are 

= 0 . 3 3 2 0 6 p ( ~ ) ’ {  1 - 2.2875 ~ €4 + 1.1 104Pe log (1 - P) E 
(1 -h* 
I . ,  

P2 + 11.814/?~+0-606- E+O(&loge) 
1 - P  4 = *Hog’(O) 

1 - 1.5250( 1 - P)-* E* + 3.028~ - 0.177 - P E + O(E%lOg E )  (5.35) 
1 -P  
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6.  Discussion of results 
The chief results of the analysis are contained in equations (3.33), (3.34), 

(5.34) and (5.35). These give the skin-friction rW and the surface value Ht of the 
tangential component of magnetic intensity as functions of the parameters e 
and p. As shown in the Appendix the current flow in the boundary layer per unit 
length of the plate is Ht - H,, so this important quantity is also determined by Ht. 

Probably the main interest centres on the forms of the leading terms of each 
expansion, since these indicate to what extent theories which assume the con- 
ductivity to be either infinite or zero are likely to be reliable. The perfect don- 
ductivity solutions (2.6) and (2.8) give the correct limiting skin-friction as from 
(3.33), and give Ht = 0. Since the leading term of (3.34) is proportional only to 
e-4 this last result may be inadequate except at very large conductivities. For 
zero conductivity the solutions (4.1) and (4.2) give correctly the leading terms of 
(5.34) and (5.35). In  each case the fist correction term is proportional to €4. 

For large conductivity the values given by (3.33) and (3.34) should be adequate 
for all practical purposes (say within 1 %) for e > 10, and should provide useful 
estimates (say within 10 %) for E > 3. Fore = 10, (3.33) gives values of rw which 
are indistinguishable from those shown in figure 2 of I, which were obtained by 
direct numerical integration. The series for small conductivity (5.34) and (5.35) 
are less efficient. The ratio of the magnitudes of successive groups of terms is 
(ignoring logarithmic factors) compared with e-l for large conductivity, and in 
addition the numerical coefficients increase rapidly. The series should, however, 
be entirely adequate for e < 0.001 and useful for e < 0.01. A comparison with the 
computed values of rW in figure 2 of I for E = 0.005 shows detectable but small 
discrepancies. 

The formulae (3.33)) (3.34), (5.34) and (5.35) each have a singular behaviour 
at /3 = 1, but it would be rash to draw too precise conclusions since in the analysis 
1 - p  was assumed not to be small. A direct study of the original equations is 
informative. For any value of e it follows from (1.2) and (1.3) that when y is 
large f N g N 2(7-a),  where a is some constant, and from (1.1) and (1.2) it is 
now readily shown that 

f be-+-a)*, grt de-c(v-a)a, (6.1) 

c~- (1+a)c+(1- /8)e  = 0. (6.2) 

where b and d are constants and c is the algebraically smaller root of the equation 

Both roots are positive for p > 1, and when 1 - p  is small the smaller root is 
approximately c = (1 - p) el( 1 + e). This shows that the width of the boundary 
layer is given by (1 -B) ( 7 - c ~ ) ~  = O(l ) ,  or 

- Y = O[(l -p)+R-4], 
X 

where R is the Reynolds number U,x/v. The boundary-layer equations are valid 
only if y/x is small within the boundary layer, and consequently they cease to 
hold when 1 -p  = O(R-l). Incidentally the asymptotic forms given above show 
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clearly that solutions of the present type cannot exist for p > 1. Equation (6.2) 
would then imply that for 7 large, f "  and g" increase exponentially with 7, 
which is impossible. 

A point which troubled the authors of I was that the Oseen analysis predicted 
that for large finite B the value of T~ exceeds that for B = CQ, at the same value 
of /3, while their numerical integrations of the full equations showed that in fact 
T~ is reduced. The leading correction term in (3.33), that multiplied by e-lloge, 
clearly acts to reduce T ~ .  Actually an inspection of the results of the Oseen 
analysis given in I shows that they are very inaccurate for all B, large and small. 
However, the authors state that their numerical values could be improved by 
supposing that the convective velocity and magnetic fields, instead of being 
equal to their free-stream values, are suitably chosen fractions of them. It is 
not evident that a major improvement over the whole range of the parameters 
can be achieved in this way, particularly in view of the involved forms of the 
solutions found above. Failing such an improvement, it seems that the linearized 
method of analysis is not to be relied on in a, problem of this complexity. 

Appendix. Derivation of the boundary-layer equations 

are 
The equations governing steady incompressible magnetohydrodynamic flow 

(A 1) 

(A 2) 

j = curlH, (A 3) 

(A 4) 

1 

P P 
( q . V ) q  = --Vp+vV2q+ejAH, 

1 
- j  = E+pqAH, 
U 

divq = divH = divE = curlE = 0, 

in m.k.s. units, wherep is the pressure, q the velocity, j the current, and H and E 
the magnetic and electric intensities. The boundary conditions in our problem 
are that q = 0 and Hv = 0 on the plate y = 0, x > 0, and at a large distance 
p = po, q = Uoi, H = Hoi. (Some comments on the plate condition Hg = 0 are 
made below.) The electric field E may be taken to be zero everywhere, and using 
(A 3) equations (A 1) and (A 2) may be written as 

(A 5) 
( q . V ) q  = -pV(p++pH2)+uV2q+C(H.V)H, 1 

P 
1 

We require two-dimensional solutions and in view of (A 4) we may look for these 
in the forms 

where k is a unit vector in the z-direction. 
On the usual boundary-layer assumption that a rate of change in the y-direc- 

tion is of a greater order of magnitude than one in the x-direction, the y-com- 
ponent of (A 5 )  shows that p + +pH2 has negligible variation across the boundary 
layer, and so may be taken to have the constant value p ,  + +pH: everywhere. 

(A 7) q = curl $(z, y) k, H = curl A(z ,  y )  k, 
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The boundary-layer approximations to the x-component of (A 5) and to (A 6) 
then give 

(A 8) 

Guided by the form of the Blasius solution for a non-conducting fluid we next 
write 

where 7 = $(Uo/vx)* y. Equations (A 8) and (A 9) become ordinary differential 
equations in 7, with the forms given in (1.1) and (1.2). We see also from (A7) 
and (A 10) that the velocity and magnetic field components are as given in (1.5) 
and (1.6), and that the boundary conditions stated above imply the conditions 
(1.3). The boundary-layer approximation to (A3) is that j =jk, where 

and the total current in the boundary layer, flowing parallel to the edge of the 
plate, is 

per unit distance in the x-direction, where H, is the value of H, at the plate y = 0. 
The boundary condition Hy = 0 on y = 0, x > 0 is obviously essential for an 

infinitely thin plate with a similar boundary layer on its lower side. By sym- 
metry the values of H, at y = 0 on the upper and lower surfaces are equal and 
opposite, and the necessary continuity of pH, across the plate surfaces can be 
achieved only if H, = 0 at the plate. But in fact the resulting form of solution is 
of wider applicability. Equation (1.6) shows that when y = 0, H, = 4 = $Hog’(0) 
which is independent of x. Consequently for a plate of arbitrary thickness all 
the magnetic equations are satisfied if H has the constant value H,i throughout 
the plate. 

Finally it may be noted that for the boundary-layer approximation to be 
appropriate it is not sufficient that the Reynolds number R = Uox/v shall be 
large. By comparing the forms of (A 9) and (A 8), or by studying the width of 
the outer layer for small conductivity as found in Q 5, we see that it is also neces- 
sary that the magnetic Reynolds number R, = ER = U,xa;cl shall be large 
compared with unity. This sets a lower limit to the conductivities for which 
the results of this paper are applicable. 
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